Fast computation of the deviance information criterion for latent variable models
نویسندگان
چکیده
The deviance information criterion (DIC) has been widely used for Bayesian model comparison. However, recent studies have cautioned against the use of the DIC for comparing latent variable models. In particular, the DIC calculated using the conditional likelihood (obtained by conditioning on the latent variables) is found to be inappropriate, whereas the DIC computed using the integrated likelihood (obtained by integrating out the latent variables) seems to perform well. In view of this, we propose fast algorithms for computing the DIC based on the integrated likelihood for a variety of highdimensional latent variable models. Through three empirical applications we show that the DICs based on the integrated likelihoods have much smaller numerical standard errors compared to the DICs based on the conditional likelihoods. T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y
منابع مشابه
Robust Deviance Information Criterion for Latent Variable Models∗
It is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison, although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular a...
متن کاملUsing multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملzoib: An R Package for Bayesian Inference for Beta Regression and Zero/One Inflated Beta Regression
Abstract The beta distribution is a versatile function that accommodates a broad range of probability distribution shapes. Beta regression based on the beta distribution can be used to model a response variable y that takes values in open unit interval (0, 1). Zero/one inflated beta (ZOIB) regression models can be applied when y takes values from closed unit interval [0, 1]. The ZOIB model is b...
متن کاملSpatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملDeviance Information Criterion for Comparing Stochastic Volatility Models
Bayesian methods have been ef cient in estimating parameters of stochastic volatility models for analyzing nancial time series. Recent advances made it possible to t stochastic volatility models of increasing complexity, including covariates, leverage effects, jump components, and heavy-tailed distributions.However, a formal model comparison via Bayes factors remains dif cult. The main ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2016